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Abstract This paper gives new concentration inequalities for the spectral norm of a
wide class of matrix martingales in continuous time. These results extend previously
established Freedman and Bernstein inequalities for series of random matrices to the
class of continuous time processes. Our analysis relies on a new supermartingale
property of the trace exponential proved within the framework of stochastic calculus.
We provide also several examples that illustrate the fact that our results allow us
to recover easily several formerly obtained sharp bounds for discrete time matrix
martingales.

Mathematics Subject Classification 60B20 · 60G44 · 60H05 · 60G48

1 Introduction

Matrix concentration inequalities control the deviation of a random matrix around its
mean. Until now, results in literature consider the case of sums of independent random
matrices, or matrix martingales in discrete time. A first matrix version of the Chernoff
bound is given in [1] and was adapted to yield matrix analogues of standard scalar
concentration inequalities in [7,23,25,26]. Later, these results were improved in [33,
34], by the use of a theorem due to Lieb [18], about the concavity of a trace exponential
function, which is a deep result closely related to the joint convexity of quantum
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entropy in physics. See also [20] for a family of sharper and more general results
based on the Stein’s method. These works contain extensions to random matrices of
classical concentration inequalities for sums of independent scalar random variables,
such as the Bernstein inequality for sub-exponential random variables, Hoeffding
inequality for sub-Gaussian random variables or Freedman inequality for martingales,
see e.g. [22] for a description of these classical inequalities. Matrix concentration
inequalities have a plethora of applications, in particular in compressed sensing and
statistical estimation [15], to develop a simpler analysis of matrix completion [11,29],
for matrix regression [5,16,24,31], for randomized linear algebra [9,21], and robust
PCA [6], which are some examples from a large corpus of works. On the other hand,
concentration inequalities for scalar continuous-time martingales are well-known, see
for instance [19,35] and [30] for uniform versions of scalar concentration, and have a
large number of applications in high-dimensional statistics [8,12] amongmany others.

Matrixmartingales in continuous time are probabilistic objects that naturally appear
in many problems like e.g., for statistical learning of time-dependent systems. No
extension of the previously mentioned results in this framework is available in lit-
erature. The aim of this paper is to provide such results, by combining tools from
random matrix theory and from stochastic calculus [19]. We establish concentration
inequalities for a large class of continuous-time matrix martingales with arbitrary pre-
dictable quadratic covariation tensor. More precisely, we provide a matrix version of
Freedman’s inequality for purely discontinuous matrix martingales (see Theorem 1)
as well as continuous martingales (see Theorem 2). We show that the variance term in
the concentration inequalities is provided by the largest eigenvalue of the predictable
quadratic covariation matrix. In that respect, our results can be understood as exten-
sions to continuous time martingales of previously established results by Tropp [33]
in the case of discrete time matrix martingales. Our proof technique requires a very
different analysis than the discrete-time case, involving tools from stochastic calculus.

The paper is organized as follows. In Sect. 2, after introducing some notation and
defining the class of matrix martingales we consider, we state our main results for
purely discontinuous martingales, see Sect. 2.3 and continuous matrix martingales,
see Sect. 2.4. We provide some comments about the link with analogous results in
discrete time and the sharpness of our bounds. In Sect. 3, we discuss some exam-
ples of application of our Theorems. We consider various particular situations that,
interestingly, allows us to recover some known results concerning series of random
matrices or scalar point processes. Technical results and the proofs of the Theorems
are gathered in “Appendices A, B and D”.

2 Main results

In this section, we give the main results of the paper: We first provide an impor-
tant result (Proposition 1) that establishes a matrix supermartingale property that is
essential for obtaining the concentration inequalities stated in Theorems 1 and 2 for
respectively purely discontinuous and continuous matrix martingales. We first begin
by recalling some definitions from probability theory and stochastic calculus and set
some notation.

123



Concentration inequalities for matrix martingales in…

2.1 Probabilistic background and Notation

Probabilistic background. We consider a complete probability space (!,F ,P) and
a filtration {Ft }t≥0 of σ -algebras included inF . Expectation E is always taken with
respect to P. We assume that the stochastic system (!,F , {Ft }t≥0,P) satisfies the
usual conditions, namely thatF0 is augmented by theP-null sets, and that the filtration
is right continuous, namelyFt = ∩u>tFu for any t ≥ 0. We shall denoteFt− as the
smallest σ -algebra containing allFs for s < t .

A matrix-valued stochastic processes {X t }t≥0 is a family of random matrices of
constant size (e.g. m × n) defined on (!,F ,P). We say that {X t }t≥0 is adapted if
for each t ≥ 0, all the entries of X t are Ft -measurable. We say that it is càdlàg if
the trajectories on [0,+∞] of each entries have left limits and are right continuous
for all ω ∈ !. If {X t }t≥0 is càdlàg, then we define its jump process {$X t }t≥0 where
$X t = X t − X t− . We say that {X t }t≥0 is predictable if all its entries are càdlàg and
predictable. We recall that a predictable process is a process that is measurable with
respect to the σ -field generated by left-continuous adapted processes. In particular, if
τ is a stopping time and Xt is a predictable process, then Xτ isFτ− measurable.

A matrix semimartingale is a matrix-valued stochastic process whose entries are
all semimartingales. In the same way, amatrix martingale {M t }t≥0 is a matrix-valued
stochastic process with entries that are all martingales. Namely, we assume that for all
possible indexes (i, j) of entries, (M t )i, j is adapted, càdlàg, such that E|(M t )i, j | <
+∞ for all t ≥ 0, and that

E[M t |Fs] = Ms

for any 0 ≤ s ≤ t , where the conditional expectation is applied entry-wise on M t .
More generally, expectations and conditional expectations are always applied entry-
wise. A brief review of tools from stochastic calculus based on semimartingales is
provided in “Appendix A.2”.

Notation. We denote by 1 the column vector with all entries equal to 1 (with size
depending on the context). Let X be a real matrix and x a real vector. The notation
diag[x] stands for the diagonal matrix with diagonal equal to x , while if X is a square
matrix, diag[X] stands for the diagonalmatrixwith diagonal equal to the one of X , tr X
stands for the trace of X . The operator norm (largest singular value) will be denoted
by ∥X∥op. We define also |X| by taking the absolute value of each entry of X .

If Y is another real matrix, the notation X ⊙ Y stands for the entry-wise prod-
uct (Hadamard product) of X and Y with same dimensions, namely (X ⊙ Y) j,k =
(X) j,k(Y) j,k . We shall denote by X⊙k the Hadamard power, where each entry of X⊙k

is the k-th power of the corresponding entry of X .
We also denote X•, j for the j-th column of X while X j,• stands for the j-th row.

Moreover, for a matrix X and p ≥ 1, we define the norms

∥X∥p,∞ = max
j

∥X j,•∥p and ∥X∥∞,p = max
j

∥X•, j∥p,

where ∥ · ∥p is the vector ℓp-norm.
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For a symmetric matrix X , the largest eigenvalue is denoted λmax(X). Moreover,
the symbol! stands for the positive semidefinite (p.s.d.) order on symmetric matrices,
namely X ! Y iff Y − X is p.s.d.

We shall denote, when well-defined,
∫ t
0 Xsds for the matrix of integrated entries

of Xs , namely (
∫ t
0 Xsds)i, j =

∫ t
0 (Xs)i, j ds.

We use also matrix notation for stochastic integrals, for instance
∫ t
0 XsdY s stands

for the matrix with entries given by the stochastic integral
( ∫ t

0
XsdY s

)

i, j
=

∑

k

∫ t

0
(Xs)i,kd(Y s)k, j ,

for stochastic processes X t and Y t that are matrix-valued, such that the matrix product
X tY t makes sense, and such that these stochastic integrals are well-defined for all i, j .
We define similarly

∫ t
0 dXsY s .

Let T be a rank 4 tensor of dimension (m × n × p × q) . It can be considered
as a linear mapping from Rp×q to Rm×n according to the following “tensor-matrix”
product:

(T ◦ A)i, j =
p∑

k=1

q∑

l=1

Ti, j;k,l Ak,l .

Wewill denote byT⊤ the tensor such thatT⊤◦A = (T◦A)⊤ (i.e.,T⊤
i, j;k,l = T j,i;k,l )

and by T•;k,l and Ti, j;• the matrices obtained when fixing the indices k, l and i, j
respectively. Notice that (T ◦ A)i, j = tr(Ti, j;•A⊤). If T and T′ are two tensors of
dimensionsm×n× p×q and n×r× p×q respectively,TT′ will stand for the tensor
of dimension m × r × p × q defined as (TT′)i, j;k,l = (T•;k,lT′

•;k,l)i, j . Accordingly,
for an integer r ≥ 1, if T•;a,b are square matrices, we will denote by Tr the tensor
such that (Tr )i, j;k,l = (Tr

•;k,l)i, j . We also introduce ∥T∥op;∞ = maxk,l ∥T•;k,l∥op,
the maximum operator norm of all matrices formed by the first two dimensions of
tensor T.

The matrix martingale Zt . In this paper we shall consider the class of m × n matrix
martingales that can be written as

Zt =
∫ t

0
Ts ◦ (Cs ⊙ dMs), (1)

where Ts is a rank 4 tensor with dimensions m × n × p × q, whose components are
assumed to be locally bounded predictable random functions. The process M t is a
p × q is matrix with entries that are square integrable martingales with a diagonal
quadratic covariation matrix (see “Appendix A.2” for the definition of the quadratic
covariation matrix of a semimartingale matrix). The matrix Cs is a matrix of p × q
predictable locally bounded functions.

More explicitly, the entries of Zt are given by

(Zt )i, j =
p∑

k=1

q∑

l=1

∫ t

0
(Ts)i, j;k,l(Cs)k,l(dMs)k,l .
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Note that Eq. (1) corresponds to a wide class of matrix martingales. This shape of
matrix martingale, which involves a rank-4 tensor, is natural: all quadratic covariations
between pairs of entries of Zt are accounted by the linear transformation T. Let us
remark that if one chooses Ti, j;k,l = (As)i,k(Bs)l, j where As and Bs are m × p and
q × n matrices of predictable functions respectively, then

Zt =
∫ t

0
As(Cs ⊙ dMs)Bs . (2)

If one chooses T of dimensions (m × n × 1 × 1) and M t = Mt a scalar martingale,
then

Zt =
∫ t

0
AsdMs,

where (As)i, j = (Ts)i, j;1,1 is a constant matrix linear transform.
In Sect. 3 below, we prove that such particular cases lead to generalizations

to continuous-time martingales of previously known concentration inequalities for
“static” random matrices. In the following we will distinguish situations where the
entries of M t are purely discontinuous martingales (see Sect. 2.3) and continuous
martingales (see Sect. 2.4). We recall the definitions of continuous and purely discon-
tinuous martingales, along with other important notions from stochastic calculus in
“Appendix A.2”.

2.2 A matrix supermartingale property

The next proposition is a key property that is used below for the proofs of concentration
inequalities both for purely discontinuous and continuous matrix martingales. It is
nevertheless by itself an interesting result since it can be understood as an extension to
random matrices of the exponential supermartingale property given implicitly in the
proof of Lemma 2.2 in [35], or the supermartingale property for multivariate counting
processes from [4], see Theorem 2, p. 165 and in Chapter 4.13 from [19].

Proposition 1 Let {Y t }t≥0 be a d × d symmetric matrix martingale such that Y0 = 0
and whose entries are locally bounded. Let U t be defined by

U t =
∑

s≤t

(
e$Y s − $Y s − I

)
. (3)

If thematrixU t has an entry-wise compensator At (i.e.,U t−At is amatrixmartingale)
which is predictable, continuous and has finite variation (FV) then the process

Lt = tr exp
(
Y t − At − 1

2

d∑

j=1

⟨Y c
•, j ⟩t

)
(4)

is a supermartingale, where ⟨Y c
•, j ⟩t is the predictable quadratic variation of the con-

tinuous part of Y•, j (see “Appendix A.2” for details). In particular, we haveELt ≤ d
for any t ≥ 0.

This proposition is proved in “Appendix A.3”.
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2.3 Purely discontinuous matrix martingales

In this section, we consider the case of a purely discontinuous (this notion is defined in
“Appendix A.2”) martingale M t . More specifically, we assume that M t is a martingale
coming from the compensation of a random matrix with entries that are compound
counting processes. We denote by [vecM]t the quadratic covariation matrix of the
vectorization of M t (defined in “Appendix A.2”).

Assumption 1 Assume that M t is a purely discontinuous matrix-martingale with
entries that are locally bounded. Moreover, we assume that they do not jump at the
same time, i.e. [vecM]t is a diagonal matrix for any t . Moreover, assume that any
(i, j)-entry satisfies

($M t )i, j = (J (N t )i, j )i, j × ($N t )i, j (5)

where:

• N t is a p × q matrix counting process (i.e., each component is a counting pro-
cess) with an intensity process λt which is predictable, continuous and with finite
variations (FV);

• (Jn)n∈N is a sequence of p×q randommatrices, independent of (Tt )t≥0, (C t )t≥0
and (N t )t≥0 and identically distributed, such that |(J1)i, j | ≤ Jmax a.s. for any i, j
and k ≥ 1, where Jmax > 0.

Remark 1 Equation (5) can be rewritten for short as $M t = JN t ⊙ $N t . It imposes
a mild condition on the structure of the jumps of M t that allows one to derive an
explicit form for the compensator of Zt (see “Appendix B”). Note that if M t is the
martingale associated with a matrix counting process, then one can simply choose the
sequence (Jn)n∈N as constantly equal to the matrix filled with ones.

The next Theorem is a concentration inequality for ∥Zt∥op, the operator norm of Zt .
Let ⟨Z•, j ⟩t (resp. ⟨Z j,•⟩t ) be the matrices of predictable quadratic variations of the
column (resp. row) vector (Zt )•, j (resp. (Zt )•, j ), and let us define

σ 2(Zt ) = max
(∥∥∥

n∑

j=1

⟨Z•, j ⟩t
∥∥∥
op
,
∥∥∥

m∑

j=1

⟨Z j,•⟩t
∥∥∥
op

)
. (6)

Let us introduce also

W s =

⎡

⎣
TsT

⊤
s ◦

(
E(J⊙2

1 ) ⊙ C⊙2
s ⊙ λs

)
0

0 T⊤
s Ts ◦

(
E(J⊙2

1 ) ⊙ C⊙2
s ⊙ λs

)

⎤

⎦ ,

(7)
and

bt = Jmax sup
s∈[0,t]

∥Cs∥∞ max
(
∥Ts∥op;∞, ∥T⊤∥op;∞

)
, (8)

and finally φ(x) = ex − 1 − x for x ∈ R.
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Theorem 1 Let Zt be the m × n matrix martingale given by Eq. (1) and suppose that
Assumption 1 holds. Moreover, assume that

E

[ ∫ t

0

φ
(
3Jmax∥Cs∥∞ max(∥Ts∥op;∞, ∥T⊤

s ∥op;∞)
)

J 2max∥Cs∥2∞ max(∥Ts∥2op;∞, ∥T⊤
s ∥2op;∞)

(W s)i, j ds
]

< +∞, (9)

for any 1 ≤ i, j ≤ m + n. Then, for any t, x, b, v > 0, the following holds:

P

[
∥Zt∥op ≥

√
2v(x + log(m + n))+ b(x + log(m + n))

3
, σ 2(Zt ) ≤ v, bt ≤ b

]

≤ e−x ,

where σ 2(Zt ) is given by Eq. (6) and bt by Eq. (8). Moreover, we have

σ 2(Zt ) = λmax(V t ),

where

V t =
∫ t

0
W s ds, (10)

with W s given by Eq. (7).

This theorem is proved in “Appendix B”. It provides a first non-commutative ver-
sion of a concentration inequality for continuous timematrixmartingales, in the purely
discontinuous case. This theorem can be understood as the generalization to continu-
ous time martingales of a Freedman inequality for (discrete time) matrix martingales
established in [33].

Let us notice that the two terms involved in the Definition (6) of σ 2(Zt ) are pre-
cisely the matrices of predictable quadratic variations of the entries of Zt Z⊤

t and
Z⊤
t Zt respectively, in full agreement with the form provided in the discrete case [33].

Moreover, if Ts , λs and Cs are deterministic, we can actually write

σ 2(Zt ) = max
(
∥E(Zt Z⊤

t )∥op, ∥E(Z⊤
t Zt )∥op

)
. (11)

This termhas the same shape as the variance term fromBernstein inequality established
for random series of bounded matrices Zn = ∑

k Sk as e.g., in [34]. This illustrates
the fact that Theorem 1 extends former results for discrete series of random matrices
to continuous time matrix martingales. A detailed discussion and comparison with
literature is given in Sect. 3 below.

Note that, since φ is an increasing function, (9) is satisfied whenever V t has finite
expectation and both ∥Cs∥∞, ∥Ts∥op;∞ and ∥T⊤

s ∥op;∞ are bounded a.s. by some
fixed constant. In the scalar case (m = n = p = q = 1), the assumption required in
Eq. (9) becomes

E
[ ∫ t

0
e3|Cs |λsds

]
< +∞,
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where matrices At , Bt and tensor Tt are scalars equal to one, and C t = Ct is scalar.
This matches the standard assumption for an exponential deviation of the scalar mar-
tingale Zt = Zt , see for instance [4].

2.4 Concentration inequality for continuous matrix martingales

In this section, we study the matrix-martingale Zt given by (1) when it is continuous.
Thismainly amounts to consider situationswhere the compensated counting processes
are replaced byBrownianmotions.More specifically, wewill suppose thatM t satisfies
the following.

Assumption 2 Assume that {M t } is a matrix of independent standard Brownian
motions. This implies in particular that its entry-wise predictable quadratic variation
matrix reads

⟨M⟩t = t I .

In this context, we can prove the analog of Theorem 1, i.e, a Freedman concentration
inequality for ∥Zt∥op, the operator norm of Zt . Thus, following the same lines as in
the previous section, let σ 2(Zt ) be defined by Eq. (6) and let us consider for following
matrix:

W t =
[
TtT

⊤
t ◦ C⊙2

t 0
0 T⊤

t Tt ◦ C⊙2
t

]
, (12)

which corresponds to the previous Definition (7) where the sequence (Jn) and the
process λt are replaced by the constant matrix with all entries equal to one. We have
the following.

Theorem 2 Let Zt be given by (1) and suppose that Assumption 2 holds. Then, the
following holds:

P

[
∥Zt∥op ≥

√
2v(x + log(m + n)) , σ 2(Zt ) ≤ v

]
≤ e−x

for any v, x > 0, where σ 2(Zt ) is defined in (6). Moreover, we have

σ 2(Zt ) = λmax(V t ),

where V t is given by

V t =
∫ t

0
W s ds, (13)

with W s given by Eq. (12).

We can remark that the above concentration inequality corresponds exactly to the
result obtained in Theorem 1 for purely discontinuous martingales, if one sets b = 0.
The concentration obtained here is in the “Gaussian” regime:M t is aBrownianmotion,
which leads to sub-Gaussian tails for Zt . This is to be contrastedwithTheorem1,which
is in a “Poisson” regime: the tails contains both sub-Gaussian and sub-exponential
terms for Zt in this case.
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2.5 Discussion

The concentration inequalities established for the two families of continuous-time
matrix martingales considered above have the same form as the Freedman inequality
obtained in the discrete-time case [26,33]. In the case of deterministic functions Ts
and Cs a direct consequence of Theorems 1 and 2 is

E∥Zt∥op ≤ σ (Zt )
√
2 log(n + m)+ bt log(n + m)

3
, (14)

where σ (Zt ) is defined by (11) and bt by (8), with bt = 0 if Assumption 2 holds.
By considering a piecewise constant tensor Ts = ∑n

k=1Tk1]k−1,k](s), where
1]k−1,k](t) stands for the indicator function of the interval ]k − 1, k], Zt reduces
to a discrete sum of randommatrices Zn = ∑n

k=1 Sk with Sk = Tk ◦
∫ k
k−1 C t ⊙dM t .

In this very particular case, one recovers exactly the results obtained by Tropp [34] in
this context, with a variance term given by

σ 2(Zn) = max
(∥∥∥

∑

k

E(SkS⊤
k )

∥∥∥
op
,
∥∥∥

∑

k

E(S⊤
k Sk)

∥∥∥
op

)
. (15)

Let us mention that, in the context of random series of matrices, a first tail bound
for the norm was provided by Ahlswede and Winter [1]. These authors established a
concentration inequality involving the variance term

σ 2
AW (Zn) = max

( ∑

k

E∥SkS⊤
k ∥op,

∑

k

E∥S⊤
k Sk∥op

)
,

which is greater than the expression in Eq. (15). The approach of Ahlswede andWinter
is based on the bounding of the matrix moment generating function ξ /→ E tr eξ Zn

by iterating Golden-Thomson inequalities (which states that tr eA+B ≤ tr eAeB for
any symmetric matrices A and B). The improvement of σ 2

AW (Zn) to σ 2(Zn) obtained
in [34] is based on a powerful result by Lieb [18], which says that X /→ tr eA+log X is
concave over the SDP (semidefinite positive) cone, for any matrix A.

A surprising aspect of our results concerning continuous time martingales is that,
as a by-product, they allow to recover previous sharp bounds without the use of the
Lieb result. The infinitesimal approach introduced in this paper allows one, through
Itô’s Lemma (see “Appendix A.2”), to bound E tr exp(Zt ) quite easily since it can be
explicitly written as E

∫ t
0 d(tr exp(Zt )).

As far as the sharpness of our results is concerned, better bounds than (14) can
be manifestly obtained in some very specific cases. Indeed, it is well-known that for
n × n matrices of symmetric i.i.d. Gaussian random variables (GOE ensemble), the
expectation of the largest eigenvalue is of order

√
n. This result has been extended to

more general matrices of i.i.d. random variables as, e.g., in the work of Seginer [32]
or Latala [17] where bounds without the

√
log n factor are obtained.

However, for the general case considered in this paper, our results can be considered
as being sharp since they match inequalities from [34] on several important partic-
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ular cases. We develop some of these cases in Sect. 3 below. Concerning the extra
log(m + n) factor, a simple example is the case of a diagonal matrix of i.i.d. standard
Gaussian variables. In that case the largest eigenvalue is simply themaximumofm+n,
whose expectation is well-known to scale as

√
log(m + n). We refer the reader to the

discussion in [2,34] for further details.

3 Some specific examples

In this section we provide some examples of applications of Theorems 1 and 2
and discuss their relationship with some former works. Further generalizations in
an even more general context and application to statistical problems are then briefly
presented.

3.1 The martingale Zt =
∫ t
0 As(Cs ⊙ dMs)Bs

Let As and Bs twomatrix-valuedprocesses of boundedpredictable functions of dimen-
sions m × p and q × n respectively. Let us suppose that (Ts)i, j,k,l = (As)i,k(Bs)l, j .
This corresponds to the situation where the matrix martingale Zt can be written as

Zt =
∫ t

0
As(Cs ⊙ dM t )Bt . (16)

In that case, the entry (i, j) of the matrixW s defined by (7) reads, when 1 ≤ i, j ≤ m:

(W s)i, j =
n∑

a=1

p∑

k=1

q∑

l=1

(Ts)i,a,k,l(Ts) j,a,k,l(E(J⊙2
1 ) ⊙ C⊙2

s ⊙ λs))k,l

=
n∑

a=1

p∑

k=1

q∑

l=1

(As)i,k(Bs)
2
l,a(As) j,k(E(J⊙2

1 ) ⊙ C⊙2
s ⊙ λs))k,l .

In the same way, for 1 ≤ i, j ≤ n, one has:

(W s)i+m, j+m =
m∑

a=1

p∑

k=1

q∑

l=1

(Bs)k,i (As)
2
a,l(Bs)k, j (E(J⊙2

1 ) ⊙ C⊙2
s ⊙ λs))l,k .

Then, Theorem1 leads to the following corollary, that follows from easy computations.

Proposition 2 If Zt is given by (16), the matrix W s defined by (7) can be written as

W t = P⊤
t

⎡

⎣
diag[(E(J⊙2

1 ) ⊙ C⊙2
t ⊙ λt ) diag[Bt B⊤

t ]1] 0

0 diag[(E(J⊙2
1 ) ⊙ C⊙2

t ⊙ λt )
⊤ diag[A⊤

t At ]1
]

⎤

⎦ P t

(17)
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with

P t =
[
A⊤
t 0
0 Bt

]
.

Furthermore, we have also that (8) writes

bt = Jmax sup
s∈[0,t]

∥As∥∞,2∥Bs∥2,∞∥Cs∥∞. (18)

The same expression holds for the matrix W t of Theorem 2, provided that one takes
(λt )i, j = (J1)i, j = 1.

The particular structure (16) enables the study of several particular cases, developed
in the next sections.

3.1.1 Counting processes

An interesting example that fits the setting of purely discontinuous martingales is the
situation where M t comes from the compensation of a matrix-valued process N t ,
whose entries are counting processes. In this example we can write M t = N t = "t ,
where "t is the compensator of N t . We fix At = I p and Bt = Iq for all t , so that
Zt =

∫ t
0 Cs ⊙ dMs . We obtain in this case

V t =
∫ t

0

[
diag

[
(C⊙2

s ⊙ λs)1
]

0
0 diag

[
(C⊙2

s ⊙ λs)
⊤1

]
]
ds,

so the largest eigenvalue is easily computed as

λmax(V t ) =
∥∥∥

∫ t

0
C⊙2
s ⊙ λsds

∥∥∥
1,∞

∨
∥∥∥

∫ t

0
C⊙2
s ⊙ λsds

∥∥∥
∞,1

,

and bt = sups∈[0,t] ∥Cs∥∞. This leads to the following corollary.

Corollary 1 Let {N t } be a p×q matrix whose entries (N t )i, j are independent count-
ing processes with intensities (λt )i, j . Consider the matrix martingale M t = N t −"t ,
where "t =

∫ t
0 λsds and let {C t } be a p × q bounded deterministic process. We have

that

∥∥∥
∫ t

0
Cs ⊙ d(N t − "t )

∥∥∥
op

≤
√

2
(∥∥∥

∫ t

0
C⊙2
s ⊙ λsds

∥∥∥
1,∞

∨
∥∥∥

∫ t

0
C⊙2
s ⊙ λsds

∥∥∥∞,1

)
(x + log(p + q))

+
sups∈[0,t] ∥Cs∥∞(x + log(p + q))

3

holds with a probability larger than 1 − e−x .

Another interesting situation is when As is of dimension 1×q, M t is of dimension
q × 1, Cs is the matrix of dimension q × 1 will all entries equal to one, Bt = 1 for
all t . In that case Zt is a scalar martingale denoted Zt . Consider A

(1)
t , . . . , A(q)

t and
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N (1)
t , . . . , N (q)

t the q components of the vector A⊤
t and the vector N t respectively.

Along the same line λ
(1)
t , . . . , λ

(q)
t denotes their associated intensities. We thus have

Zt =
q∑

k=1

∫ t

0
A(k)
s dN (k)

s ,

which is a martingale considered in [12]. In this case we have from Proposition 2:

V t =
∫ t

0

[∑q
k=1(A

(k)
s )2λ

(k)
s 0

0
∑q

k=1(A
(k)
s )2λ

(k)
s

]

ds,

whose largest eigenvalue is simply
∫ t
0

∑q
k=1(A

(k)
s )2λ

(k)
s ds. Theorem 1 becomes in this

particular case the following.

Corollary 2 Let (N (1)
t , . . . , N (q)

t ) be q counting processes of intensities λ
(1)
t , . . . ,

λ
(q)
t . Let us consider the martingale

Zt =
q∑

k=1

∫ t

0
A(k)
s (dN (k)

s − λ(k)s ds)

where (A(k))k=1,...,q are q predictable functions. If one assumes that bt =
supk,s≤t ∥A(k)

s ∥ ≤ 1, the following inequality

P

(
|Zt | ≥

√
2xv + x

3
,

q∑

k=1

∫ t

0
(A(k)

s )2λ(k)s ds ≤ v

)
≤ 2e−x

holds for any x, v > 0.

This result exactly corresponds to the concentration inequality proved in [12] in the
context of statistical estimation of point processes.

3.1.2 “Static” random matrices

Theorems 1 and 2 can be helpful to study the norm of some specific random matrices.
Let us consider a n×mmatrixG = [gi, j ] of independent centeredGaussian random

variables gi, jwith variance c2i, j . This corresponds to the situation in Proposition 2when
t = 1, At = In , Bt = Im and (C t )i, j = (C)i, j = ci, j . The (n+m)× (n+m)matrix
W t given by (7) writes in this case as the diagonal matrix with entries equal to the
square ℓ2-norms of rows and columns of C respectively. In this setting, Theorem 2
entails the following.

Corollary 3 Let G be a n × m random matrix with independent entries gi, j that are
centered Gaussian with variance c2i, j . Then,
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P
(
∥G∥op ≥ σ

√
x + log(n + m)

)
≤ e−x (19)

with

σ 2 = max
(
∥C∥∞,2, ∥C∥2,∞

)
= max

(
max

i=1,...,n

m∑

j=1

c2i, j , max
j=1,...,m

n∑

i=1

c2i, j

)
.

In the case of standard Gaussian random variables, i.e., b2i, j = 1, we simply have
σ 2 = max(n,m). Moreover, Eq. (19) entails in the case n = m:

E∥G∥op ≤ σ
√
2 log(2n).

We therefore recover the bounds onE∥G∥op that results from concentration inequali-
ties obtained by alternative methods [26,34]. We refer the reader to Sect. 2.5 and [34]
for a discussion about the sharpness of this result.

The same kind of result can be obtained for a random matrix N containing inde-
pendent entries with a Poisson distribution. Take C t = C as the n×m matrix with all
entries equal to one, and consider the n × m matrix N t with entries (N t )i, j that are
homogeneous Poisson processes on [0, 1]with (constant) intensity λi, j . Taking t = 1,
and forming the matrix λ with entries (λ)i, j = λi, j , we obtain from Corollary 1 the
following.

Corollary 4 Let N be a n × m random matrix whose entries (N)i, j have a Poisson
distribution with intensity λi, j . Then, we have

P

(
∥N − λ∥op ≥

√
2(∥λ∥1,∞ ∨ ∥λ∥∞,1)x + x

3

)
≤ (n + m)e−x

for any x > 0, where λ has entries (λ)i, j = λi, j .

Such a result for random matrices with independent Poisson entries was not, up to
the knowledge of the authors, explicitly exhibited in literature. Note that, in contrast
to the Gaussian case considered in Corollary 3, the variance term depends on the
maximum ℓ1 norm of rows and columns of λ, which comes from the subexponentiality
of the Poisson distribution.

3.2 Stochastic integral of a matrix of functions

In this section we consider the simple case where Ms = Ms is scalar martingale and
Ts is a matrix of deterministic functions, i.e., (Ts)i, j;k,l = (As)i, j . Let us suppose,
for the sake of simplicity, that Cs = 1. The matrix martingale Zt therefore writes

Zt =
∫ t

0
AsdMs . (20)

If that case, Theorems 1 and 2 lead to the following.
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Proposition 3 Let bt = sups∈[0,t]max(∥As∥2,∞, ∥As∥∞,2) if Mt satisfies Assump-
tion 1 and take bt = 0 if Mt is a Brownian motion. Let us define the variance

σ 2
t = max

(∥∥∥
∫ t

0
As A⊤

s ds
∥∥∥
op
,
∥∥∥

∫ t

0
A⊤
s Asds

∥∥∥
op

)
. (21)

Then

P
(
∥Zt∥op ≥

√
2σ 2

t x + xbt
3

)
≤ (n + m)e−x (22)

for any x > 0.

This result is a continuous time version of an analogous inequality obtained in [34]
for series of random matrices Zn of the form

Zn =
n∑

k=1

γk Ak,

where γk are i.i.d. zero mean random variables (e.g. standard normal) and Ak is a
sequence of deterministic matrices. Note that Proposition 3 allows one to recover the
result for a discrete sequence Zn simply by considering a piecewise constant matrix-
valued process As .
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Appendix A: Tools for the study of matrix martingales in continuous
time

In this section we give tools for the study of matrix martingales in continuous time.
We proceed by steps. The main result of this section, namely Proposition 1, proves
that the trace exponential of a matrix martingale is a supermartingale, when properly
corrected by terms involving quadratic covariations.

Appendix A.1: A first tool

We give first a simple lemma that links the largest eigenvalues of random matrices to
the trace exponential of their difference.

Lemma A.1 Let X and Y be two symmetric random matrices such that

trE[eX−Y ] ≤ k
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for some k > 0. Then, we have

P[λmax(X) ≥ λmax(Y)+ x] ≤ ke−x

for any x > 0.

Proof Using the fact that [28]

A ! B ⇒ tr exp(A) ≤ tr exp(B), for any A, B symmetric, (23)

along with the fact that Y ! λmax(Y)I , one has

tr exp(X − Y)1E ≥ tr exp(X − λmax(Y)I)1E ,

where we set E = {λmax(X) ≥ λmax(Y) + x}. Now, since λmax(M) ≤ tr M for any
symmetric positive definite matrix M, we obtain

tr exp(X − Y)1E ≥ λmax(exp(X − λmax(Y)I))1E
= exp(λmax(X) − λmax(Y))1E
≥ ex1E ,

so that taking the expectation on both sides proves Lemma A.1. ⊓5

Appendix A.2: Various definitions and Itô’s Lemma for functions of matrices

In this section we describe some classical notions from stochastic calculus [13,19] and
extend them to matrix semimartingales. Let us recall that the quadratic covariation of
two scalar semimartingales Xt and Yt is defined as

[X,Y ]t = XtYt −
∫ t

0
Yt−dXt −

∫ t

0
Xt−dYt − X0Y0 .

It can be proven (see e.g. [13]) that the non-decreasing process [X, X ]t , often denoted
as [X ]t , does correspond to the quadratic variation of Xt since it is equal to the limit
(in probability) of

∑
i (Xti − Xti−1)

2 when the mesh size of the partition {ti }i of the
interval [0, t] goes to zero.

If Xt is a square integrable scalarmartingale, then itspredictable quadratic variation
⟨X⟩t is defined as the unique predictable increasing process such that X2

t − ⟨X⟩t is
a martingale. The predictable quadratic covariation between two square integrable
scalar martingales Xt and Yt is then defined from the polarization identity:

⟨X, Y ⟩ = 1
4

(
⟨X + Y, X + Y ⟩ − ⟨X − Y, X − Y ⟩

)
.
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Amartingale Xt is said to be continuous if its sample paths t /→ Xt are a.s. continuous,
andpurely discontinuous1 if X0 = 0 and ⟨X, Y ⟩t = 0 for any continuousmartingaleYt .

The notion of predictable quadratic variation can be extended to semimartingales.
Indeed, any semimartingale Xt can be represented as a sum:

Xt = X0 + Xc
t + Xd

t + At , (24)

where Xc
t is a continuous local martingale, Xd

t is a purely discontinuous local martin-
gale and At is a process of bounded variations. Since in the decomposition (24), Xc

t is
unambiguously determined, ⟨Xc⟩t is therefore well defined [13]. Within this frame-
work, one can prove (see e.g. [13]) that if Xt and Yt are two semimartingales, then:

[X,Y ]t = ⟨Xc, Y c⟩t +
∑

0≤s≤t

$Xs$Ys . (25)

All these definitions can be naturally extended to matrix valued semimartingales.
Let X t be a p× q matrix whose entries are real-valued square-integrable semimartin-
gales. We denote by ⟨M⟩t the matrix of entry-wise predictable quadratic variations.
The predictable quadratic covariation of X t is defined with the help of the vectoriza-
tion operator vec : Rp×q → Rpq which stacks vertically the columns of X , namely
if X ∈ Rp×q then

vec(X) =
[
X1,1 · · · X p,1X1,2 · · · X p,2 · · · X1,q · · · X p,q

]⊤
.

We define indeed the predictable quadratic covariation matrix ⟨vecX⟩t of X t as the
pq × pq matrix with entries

(⟨vecX⟩t )i, j = ⟨(vecX t )i , (vecX t ) j ⟩ (26)

for 1 ≤ i, j ≤ pq, namely such that vec(X t )vec(X t )
⊤ −⟨vecX⟩t is a martingale. The

matrices of quadratic variations [X]t and quadratic covariations [vecX]t are defined
along the same line.

Then according to Eq. (25), we have:

[X]t = ⟨Xc⟩t +
∑

0≤s≤t

($Xs)
2, (27)

and
[vecX]t = ⟨vecXc⟩t +

∑

0≤s≤t

vec($Xs)vec($Xs)
⊤.

An important tool for our proofs is Itô’s lemma, that allows one to compute the stochas-
tic differential dF(M t ) where F : Rp×q → R is a twice differentiable function. We
denote by dF

dvec(X) the pq-dimensional vector such that

1 Let us note that this definition does not imply that a purely discontinuous martingale is the sum of its
jumps: for example a compensated Poisson process Nt − λt is a purely discontinuous martingale that has
a continuous component.
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[ dF
dvec(X)

]

i
= ∂F

∂(vecX)i
for 1 ≤ i ≤ pq.

The second order derivative is the pq × pq symmetric matrix given by

[ d2F
dvec(X)dvec(X)⊤

]

i, j
= ∂2F

∂(vecX)i∂(vecX) j
for 1 ≤ i, j ≤ pq.

A direct application of the multivariate Itô Lemma ([19] Theorem 1, p. 118) writes
for matrix semimartingales as follows.

Lemma A.2 (Itô’s Lemma) Let {X t }t≥0 be a p × q matrix semimartingale and F :
Rp×q → R be a twice continuously differentiable function. Then

dF(X t ) =
( dF
dvec(X)

(X t−)
)⊤

vec(dX t )+ $F(X t ) −
( dF
dvecX

(X t−)
)⊤

vec($X t )

+ 1
2
tr

(( d2F
dvec(X)dvec(X)⊤

(X t−)
)⊤

d⟨vecXc⟩t
)
.

As an application, let us apply Lemma A.2 to the function F(X) = tr exp(X) that
acts on the set of symmetric matrices. This result will be of importance for the proof
of our results.

Lemma A.3 (Itô’s Lemma for the trace exponential) Let {X t } be a d × d symmetric
matrix semimartingale. The Itô formula for F(X t ) = tr exp(X t ) gives

d(tr eX t ) = tr(eX t−dX t )+$(tr eX t )−tr(eX t− $X t )+
1
2

d∑

i=1

tr(eX t−d⟨Xc
•,i ⟩t ), (28)

where ⟨Xc
•,i ⟩t denotes the d × d predictable quadratic variation of the continuous

part of the i-th column (X t )•,i of X t .

Proof An easy computation gives

tr eX+H = tr eX + tr(eX H)+ tr(eX H2)+ higher order terms in H

for any symmetric matrices X and H . Note that tr(eX H) = (vecH)⊤vec(eX ), and
we have from [14] Exercise 25 p. 252 that

tr(eX H2) = tr(HeX H) = (vecH)⊤(I ⊗ eX )(vecH),

where the Kronecker product I ⊗ eX stands for the block matrix

I ⊗ Y =

⎡

⎢⎢⎢⎢⎣

eX 0 · · · 0

0 eX
...

...
. . . 0

0 · · · 0 eX

⎤

⎥⎥⎥⎥⎦
.
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This entails that

d(tr eX )
dvec(X)

= vec(eX ) and
d2(tr eX )

dvec(X)dvec(X)⊤
= I ⊗ eX .

Hence, using Lemma A.2 with F(X) = tr eX we obtain

d(tr eX t ) = vec(eX t− )⊤vec(dX t )+ $(tr eX t ) − vec(eX t− )⊤vec($X t )

+ 1
2
tr

(
(I ⊗ eX t− )d⟨vecXc⟩t

)
.

Since vec(Y)⊤vec(Z) = tr(Y Z), one gets

d(tr eX t ) = tr(eX t−dX t )+ $(tr eX t )

− tr(eX t− $X t )+
1
2
tr

(
(I ⊗ eX t− )d⟨vecXc⟩t

)
.

To conclude the proof of Lemma A.3, it remains to prove that

tr
(
(I ⊗ eX t− )d⟨vecXc⟩t

)
=

d∑

i=1

tr(eX t−d⟨Xc
•,i ⟩t ).

First, let us write

d⟨vecXc⟩t =
∑

1≤i, j≤d

Ei, j ⊗ d⟨Xc
•,i , X

c
•, j ⟩t ,

where Ei, j is the d×d matrixwith all entries equal to zero excepted for the (i, j)-entry,
which is equal to one. Since

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) and tr(A ⊗ B) = tr(A) tr(B)

for any matrices A, B,C, D with matching dimensions (see for instance [14]), we
have

tr
(
(I ⊗ eX t− )d⟨vecXc⟩t

)
=

∑

1≤i, j≤d

tr(Ei, j ) tr(eX t−d⟨Xc
•,i , X

c
•, j ⟩t )

=
d∑

i=1

tr(eX t−d⟨Xc
•,i , X

c
•,i ⟩t )

since tr Ei, j = 0 for i ̸= j and 1 otherwise. This concludes the proof of Lemma A.3.
⊓5
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Appendix A.3: Proof of Proposition 1

Define for short

X t = Y t − At − 1
2

d∑

j=1

⟨Y c
•, j ⟩t .

Since At and ⟨Y c
•, j ⟩t for j = 1, . . . , d are FV processes, then

⟨vecXc⟩ = ⟨vecY c⟩ (29)

and in particular ⟨Y c
•, j ⟩ = ⟨Xc

•, j ⟩ for any j = 1, . . . , d. Using Lemma A.3, one has
that for all t1 < t2:

Lt2 − Lt1 =
∫ t2

t1
tr(eX t−dX t )+

∑

t1≤t≤t2

(
$(tr eX t ) − tr(eX t− $X t )

)

+ 1
2

∫ t2

t1

d∑

j=1

tr(eX t−d⟨Xc
•, j ⟩t )

=
∫ t2

t1
tr(eX t−dY t ) −

∫ t2

t1
tr(eX t−dAt )

+
∑

t1≤t≤t2

(
tr(eX t−+$Y t ) − tr(eX t− ) − tr(eX t− $Y t )

)
,

where we used (29) together with the fact that $X t = $Y t , since At and ⟨Y c
•, j ⟩t are

both continuous.
The Golden-Thompson’s inequality, see [3], states that tr eA+B ≤ tr(eAeB) for any

symmetric matrices A and B. Using this inequality we get

Lt2 − Lt1 ≤
∫ t2

t1
tr(eX t−dY t ) −

∫ t2

t1
tr(eX t−dAt )

+
∑

t1≤t≤t2

tr
(
eX t− (e$Y t − $Y t − I)

)

=
∫ t2

t1
tr(eX t−dY t )+

∫ t2

t1
tr

(
eX t−d(U t − At )

)
.

SinceY t andU t −At arematrixmartingales, eX t− is a predictable process with locally
bounded entries and Lt ≥ 0, the r.h.s of the last equation corresponds to the variation
between t1 and t2 of a non-negative local martingale, i.e., of a supermartingale. It
results that E[Lt2 − Lt1 |Ft1 ] ≤ 0, which proves that Lt is also a supermartingale.
Using this last inequality with t1 = 0 and t2 = t givesE[Lt ] ≤ d. This concludes the
proof of Proposition 1.
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Appendix A.4: Bounding the odd powers of the dilation operator

The process {Zt } is not symmetric, hence following [34], we will force symmetry in
our proofs by extending it in larger dimensions, using the symmetric dilation operator
[27] given, for a matrix X , by

S (X) =
[

0 X
X⊤ 0

]
. (30)

The following Lemma will prove useful:

Lemma A.4 Let X be some n × m matrix and k ∈ N. Then

S (X)2k+1 =
[

0 X(X⊤X)k

X⊤(XX⊤)k 0

]
!

[
(XX⊤)k+1/2 0

0 (X⊤X)k+1/2

]
.

Proof The first equality results from a simple algebra. It can be rewritten as:

S (X)2k+1 =
[

0 (XX⊤)kX
X⊤(XX⊤)k 0

]
= C

[
0 (XX⊤)k

(XX⊤)k 0

]
C⊤ (31)

where

C =
[

0 In
X⊤ 0

]
. (32)

Since (XX⊤)k " 0 and

A =
[
1 −1

−1 1

]
" 0,

we obtain that A⊗ (XX⊤)k " 0, since the eigenvalues of a Kronecker product A⊗ B
are given by the products of the eigenvalues of A and B, see [10]. This leads to:

[
0 (XX⊤)k

(XX⊤)k 0

]
!

[
(XX⊤)k 0

0 (XX⊤)k

]
.

Using the fact that [28]

A ! B ⇒ CAC⊤ ! CBC⊤ (33)

for any real matrices A, B,C (with compatible dimensions), we have:

S (X)2k+1 ! C
[
(XX⊤)k 0

0 (XX⊤)k

]
C⊤ =

[
(XX⊤)k 0

0 (X⊤X)k+1

]
.
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Along the same line, one can establish that:

S (X)2k+1 !
[
(XX⊤)k+1 0

0 (X⊤X)k

]
.

The square root of the product of the two inequalities provides the desired result. ⊓5

Appendix B: Proof of Theorem 1

Let us recall the definition (30) of the dilation operator. Let us point out that S (X)

is symmetric and satisfies λmax(S (X)) = ∥S (X)∥op = ∥X∥op. Note that S (Zt )

is purely discontinuous, so that ⟨S (Z)c•, j ⟩t = 0 for any j . Recall that we work on
events {λmax(V t ) ≤ v} and {bt ≤ b}.

We want to apply Proposition 1 (see “Appendix A” above) to Y t = ξS (Zt )/b. In
order to do so, we need the following Proposition.

Proposition B.1 Let the matrixW t be the matrix defined in Eq. (7). Let any ξ ≥ 0 be
fixed and consider φ(x) = ex − x − 1 for x ∈ R. Assume that

E

[ ∫ t

0

φ
(
ξ Jmax∥Cs∥∞ max(∥Ts∥op;∞, ∥T⊤

s ∥op;∞)
)

J 2max∥Cs∥2∞ max(∥Ts∥2op;∞, ∥T⊤
s ∥2op;∞)

(W s)i, j ds
]
< +∞, (34)

for any 1 ≤ i, j ≤ m + n and grant also Assumption 1 from Sect. 2.3. Then, the
process

U t =
∑

0≤s≤t

(
eξ$S (Zs ) − ξ$S (Zs) − I

)
, (35)

admits a predictable, continuous and FV compensator "t given by Eq. (39) below.
Moreover, the following upper bound for the semi-definite order

"t !
∫ t

0

φ
(
ξ Jmax∥Cs∥∞ max(∥Ts∥op;∞, ∥T⊤

s ∥op;∞)
)

J 2max∥Cs∥2∞ max(∥Ts∥2op;∞, ∥T⊤
s ∥2op;∞)

W sds (36)

is satisfied for any t > 0.

This proposition is proved in “Appendix C” below. We use Proposition 1, Eq. (36)
and Eq. (23) together with (9) to obtain

E
[
tr exp

(ξ

b
S (Zt ) −

∫ t

0

φ
(
ξ Jmax∥Cs∥∞ max(∥Ts∥op;∞, ∥T⊤

s ∥op;∞)b−1)

J 2max∥Cs∥2∞ max(∥Ts∥2op;∞, ∥T⊤
s ∥2op;∞)

W sds
)]

≤ m + n
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for any ξ ∈ [0, 3]. Using this with Lemma A.1 entails

P

[
λmax(S (Zt ))

b

≥ 1
ξ
λmax

( ∫ t

0

φ
(
ξ Jmax∥Cs∥∞ max(∥Ts∥op;∞, ∥T⊤

s ∥op;∞)b−1)

J 2max∥Cs∥2∞ max(∥Ts∥2op;∞, ∥T⊤
s ∥2op;∞)

W sds
)
+ x

ξ

]

≤ (m + n)e−x .

Note that on {bt ≤ b} we have Jmax∥Cs∥∞ max(∥Ts∥op;∞, ∥T⊤
s ∥op;∞)b−1 ≤ 1 for

any s ∈ [0, t]. The following facts on the function φ(x) hold true (cf. [12,22]):

(i) φ(xh) ≤ h2φ(x) for any h ∈ [0, 1] and x > 0
(ii) φ(ξ) ≤ ξ2

2(1−ξ/3) for any ξ ∈ (0, 3)

(iii) minξ∈(0,1/c)
( aξ
1−cξ + x

ξ

)
= 2

√
ax + cx for any a, c, x > 0.

Using successively (i) and (ii), one gets, on {bt ≤ b} ∩ {λmax(V t ) ≤ v}, that for
ξ ∈ (0, 3):

1
ξ
λmax

( ∫ t

0

φ
(
ξ Jmax∥Cs∥∞ max(∥Ts∥op;∞, ∥T⊤

s ∥op;∞)b−1)

J 2max∥Cs∥2∞ max(∥Ts∥2op;∞, ∥T⊤
s ∥2op;∞)

W sds
)
+ x

ξ

≤ φ(ξ)

ξb2
λmax

( ∫ t

0
W sds

)
+ x

ξ

= φ(ξ)

ξb2
λmax(V t )+

x
ξ

≤ ξv

2b2(1 − ξ/3)
+ x

ξ
,

where we recall that V t is given by (10). This gives

P

[
λmax(S (Zt ))

b
≥ ξv

2b2(1 − ξ/3)
+ x

ξ
, bt ≤ b, λmax(V t ) ≤ v

]
≤ (m + n)e−x ,

for any ξ ∈ (0, 3). Now, by optimizing over ξ using (iii) (with a = v/2b2 and
c = 1/3), one obtains

P

[
λmax(S (Zt ))

b
≥

√
2vx
b

+ x
3
, bt ≤ b, λmax(V t ) ≤ v

]
≤ (m + n)e−x .

Since λmax(S (Zt )) = ∥S (Zt )∥op, this concludes the proof of Theorem 1 when the
variance term is expressed using Eq. (10). It only remains to prove the fact that

σ 2(Zt ) = λmax(V t ).

123



Concentration inequalities for matrix martingales in…

Since W s is block-diagonal, we have obviously:

λmax(V t ) = max
(∥∥∥

∫ t

0
TsT

⊤
s ◦

(
E(J⊙2

1 ) ⊙ C⊙2
s ⊙ λs

)
ds

∥∥∥
op
,

∥∥∥
∫ t

0
T⊤
s Ts ◦

(
E(J⊙2

1 ) ⊙ C⊙2
s ⊙ λs

)
ds

∥∥∥
op

)
.

From the definition of Zt , since the entries of $M t do not jump at the same time, the
predictable quadratic covariation of (Zt )k, j and (Zt )l, j is simply the predictable com-
pensator of

∑
a,b

∑
s≤t (Ts)k, j;a,b(Ts)l, j (Cs)

2
a,b(JNs )

2
a,b($Ns)a,b. It results that

n∑

j=1

(d⟨Z•, j ⟩t )k,l =
∑

j

(Tt )k, j;a,b(Tt )l, j;a,bE((J1)2a,b)(λt )a,b(C t )
2
a,bdt

=
(
TtT

⊤
t ◦ E(J⊙2

1 ) ⊙ C⊙2
t ⊙ λt

)

k,l
dt.

An analogous computation for ⟨Z j,•⟩t leads to the expected result, and concludes the
proof of Theorem 1. ⊓5

Appendix C: Proof of Proposition B.1

Let us first remark that:

exp(S (X)) =
∞∑

k=0

1
(2k)!

[
(XX⊤)k 0

0 (X⊤X)k

]

+ 1
(2k + 1)!

[
0 X(X⊤X)k

X⊤(XX⊤)k 0

]
.

Then, from the definition of U t in Eq. (35), we have:

U t =
∑

0≤s≤t

∑

k≥2

ξ kS ($Zs)
k

k!

=
∑

0≤s≤t

∑

k≥1

⎡

⎣
ξ2k

(2k)! ($Zs$Z⊤
s )

k ξ2k+1

(2k+1)!$Zs($Z⊤
s $Zs)

k+1

ξ2k+1

(2k+1)!$Z⊤
s ($Zs$Z⊤

s )
k+1 ξ2k

(2k)! ($Z⊤
s $Zs)

k

⎤

⎦ .

Since ($Zs($Z⊤
s $Zs)

k)⊤ = $Z⊤
s ($Zs$Z⊤

s )
k , we need to compute three terms:

($Zs$Z⊤
s )

k , ($Z⊤
s $Zs)

k and $Z⊤
s ($Zs$Z⊤

s )
k .
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From Assumption 1, one has, a.s. that the entries of M t cannot jump at the same
time, hence

($M t )i1, j1 × · · · × ($M t )im , jm

=
{
(($M t )i1, j1)

m if i1 = · · · = im and j1 = · · · = jm
0 otherwise

(37)

a.s. for any t ,m ≥ 2 and any indexes ik ∈ {1, . . . , p} and jk ∈ {1, . . . , q}. This entails,
with the definition (1) of $Zs , that ($Zs$Z⊤

s )
k is given, a.s., by

p∑

a=1

q∑

b=1

((Ts)•;a,b(Ts)
⊤
•;a,b)

k((Cs)a,b($Ms)a,b)
2k = (TsT

⊤
s )

k ◦ (Cs ⊙ $Ms)
⊙2k .

Let us remark that Eq. (34) entails

E

∫ t

0

∑

k≥1

ξ2k

(2k)!

p∑

a=1

q∑

b=1

(
((Ts)•;a,b(Ts)

⊤
•;a,b)

k)
i, j ((Cs)a,b)

2k E[|J1|2ka,b] (λs)a,b ds

< +∞

for any i, j , so that together with Assumption 1, it is easily seen that the compensator
of

∑

0≤s≤t

∑

k≥1

ξ2k

(2k)! ($Zs$Z⊤
s )

k (38)

is a.s. given by

∫ t

0

∑

k≥1

ξ2k

(2k)!

p∑

a=1

q∑

b=1

((Ts)•;a,b(Ts)
⊤
•;a,b)

k(Cs)
2k
a,bE[(J1)2ka,b](λs)a,bds.

Following the same arguments as for (38), we obtain that the compensator of

∑

0≤s≤t

∑

k≥1

ξ2k

(2k)! ($Z⊤
s $Zs)

k

is a.s. given by

∫ t

0

∑

k≥1

ξ2k

(2k)!

p∑

a=1

q∑

b=1

((Ts)
⊤
•;a,b(Ts)•;a,b)k(Cs)

2k
a,bE[(J1)2ka,b](λs)a,bds.

Along the same line, one can easily show that the compensator of

∑

0≤s≤t

∑

k≥1

ξ2k+1

(2k + 1)!$Z⊤
s ($Zs$Z⊤

s )
k,
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reads a.s.:

∫ t

0

∑

k≥1

ξ2k

(2k)!

p∑

a=1

q∑

b=1

(Ts)
⊤
•;a,b((Ts)•;a,b(Ts)

⊤
•;a,b)

k(Cs)
2k+1
a,b E[(J1)2k+1

a,b ](λs)a,bds.

Finally, we can write, a.s., the compensator of U t as

"t =
∫ t

0

∑

k≥1

R(k)
s ds (39)

where

R(k)
s =

⎡

⎣
ξ2k

(2k)! D
(k)
1,s

ξ2k+1

(2k+1)! (H
(k+1)
s )⊤

ξ2k+1

(2k+1)!H
(k+1)
s

ξ2k

(2k)! D
(k)
2,s

⎤

⎦ (40)

with

D(k)
1,s =

p∑

a=1

q∑

b=1

((Ts)•;a,b(Ts)
⊤
•;a,b)

k(Cs)
2k
a,bE[(J1)2ka,b](λs)a,b

D(k)
2,s =

p∑

a=1

q∑

b=1

((Ts)
⊤
•;a,b(Ts)•;a,b)k(Cs)

2k
a,bE[(J1)2ka,b](λs)a,b

H(k+1)
s =

p∑

a=1

q∑

b=1

(Ts)
⊤
•;a,b((Ts)•;a,b(Ts)

⊤
•;a,b)

k(Cs)
2k+1
a,b E[(J1)2k+1

a,b ](λs)a,b.

One can now directly use LemmaA.4with X = (Ts)•;a,bE[(J1)2k+1
a,b ]1/(2k+1)(Cs)a,b

to obtain:

"t !
∫ t

0

∑

k≥2

p∑

a=1

q∑

b=1

ξ k J k−2
max

k!

[
((Ts)•;a,b(Ts)

⊤
•;a,b)

k/2 0
0 ((Ts)

⊤
•;a,b(Ts)•;a,b)k/2

]

× (Cs)
k
a,bE[(J1)2a,b](λs)a,bds

=
∫ t

0

∑

k≥2

ξ k J k−2
max

k!

[
(Ts ◦ T⊤

s )
k/2 0

0 (T⊤
s ◦ Ts)

k/2

]
◦

(
C⊙k
s ⊙ E(J⊙2

1 ) ⊙ λs
)
ds

where we used the fact that |(J1)i, j | ≤ Jmax a.s. for any i, j under Assumption 1.
Given the fact that

((Ts)•;a,b(Ts)
⊤
•;a,b)

1/2 ! ∥(Ts)•;a,b∥op Im ! ∥Ts∥op,∞ Im
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for any a, b, where we used the notations and definitions from Sect. 2.1, we have:

"t !
∫ t

0

[
TsT

⊤
s 0

0 T⊤
s Ts

]
◦ (C⊙2

s ⊙ E(J⊙2
1 ) ⊙ λs)

×
∑

k≥2

ξ k

k! J
k−2
max ∥Cs∥k−2

∞ max(∥Ts∥op;∞, ∥T⊤
s ∥op;∞)2k−1ds

=
∫ t

0

[
TsT

⊤
s 0

0 T⊤
s Ts

]
◦ (C⊙2

s ⊙ E(J⊙2
1 ) ⊙ λs)

× φ
(
ξ Jmax∥Cs∥∞ max(∥Ts∥op;∞, ∥T⊤

s ∥op;∞)
)

J 2max∥Cs∥2∞ max(∥Ts∥2op;∞, ∥T⊤
s ∥2op;∞)

ds

where we recall that φ(x) = ex − 1 − x . Hence, we finally get

"t !
∫ t

0

φ
(
ξ Jmax∥Cs∥∞ max(∥Ts∥op;∞, ∥T⊤

s ∥op;∞)
)

J 2max∥Cs∥2∞ max(∥Ts∥2op;∞, ∥T⊤
s ∥2op;∞)

W sds,

where W t is given by (7). This concludes the proof of Proposition B.1. ⊓5

Appendix D: Proof of Theorem 2

The proof follows the same lines as the proof of Theorem 1. We consider as before
the symmetric dilation S (Zt ) of Zt (see Eq. (30)) and apply Proposition 1 with
Y t = ξS (Zt ) and d = m + n. Since Zt is a continuous martingale, we have U t = 0
(cf. (3)), so that ⟨U⟩t = 0 and we have ⟨Zc⟩t = ⟨Z⟩t . So, Proposition 1 gives

E
[
tr exp

(
ξS (Zt ) − 1

2

m+n∑

j=1

ξ2⟨S (Z)•, j ⟩t
)]

≤ m + n. (41)

From the definition of the dilation operator S , it can be directly shown that:

m+n∑

j=1

⟨S (Z)•, j ⟩t =
[∑n

j=1⟨Z•, j ⟩t 0m,n

0n,m
∑m

j=1⟨Z j,•⟩t

]

where ⟨Z•, j ⟩t (resp. ⟨Z•, j ⟩t ) is them×m (resp. n×n) matrix of the quadratic variation
of the j-th column (resp. row) of Zt . Since [Mcon]t = ⟨Mcon⟩t = t I , we have (for
the sake of clarity, we omit the subscript t in the matrices):
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n∑

j=1

(d⟨Z•, j ⟩t )kl =
n∑

j=1

d[Zk, j , Zl, j ]

=
n∑

j=1

p∑

a=1

q∑

b=1

Tk, j;a,bTl, j;a,bC2
a,bdt

=
(
TtT

⊤
t ◦ C⊙2

t
)
k,ldt

which gives in a matrix form

n∑

j=1

d⟨Z•, j ⟩t = TtT
⊤
t ◦ C⊙2

t dt.

One can easily prove in the same way that

m∑

j=1

d⟨Z j,•⟩t = T⊤
t Tt ◦ C⊙2

t dt.

Thus,

m+n∑

j=1

⟨S (Z)c•, j ⟩t = V t ,

where V t is given by (13). From (41), it results

E
[
tr exp

(
ξS (Zt ) − ξ2

2
V t

)]
≤ m + n.

Then, using Lemma A.1, one gets

P

[
λmax(S (Zt )) ≥ ξ

2
λmax(V t )+

x
ξ

]
≤ (m + n)e−x . (42)

On the event {λmax(V t ) ≤ v}, one gets

P

[
λmax(S (Zt )) ≥ ξ

2
v + x

ξ
, λmax(V t ) ≤ v

]
≤ (m + n)e−x . (43)

Optimizing on ξ , we apply this last result for ξ = √
2x/v and get

P

[
λmax(S (Zt )) ≥

√
2xv, λmax(V t ) ≤ v

]
≤ (m + n)e−x . (44)

Since λmax(S (Zt )) = ∥S (Zt )∥op, this concludes the proof of Theorem 2. ⊓5
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